Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Sci Rep ; 13(1): 9965, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340062

RESUMO

Although liver transplantation (LT) is an effective therapy for cirrhosis, the risk of post-LT NASH is alarmingly high and is associated with accelerated progression to fibrosis/cirrhosis, cardiovascular disease and decreased survival. Lack of risk stratification strategies hampers early intervention against development of post-LT NASH fibrosis. The liver undergoes significant remodeling during inflammatory injury. During such remodeling, degraded peptide fragments (i.e., 'degradome') of the ECM and other proteins increase in plasma, making it a useful diagnostic/prognostic tool in chronic liver disease. To investigate whether liver injury caused by post-LT NASH would yield a unique degradome profile that is predictive of severe post-LT NASH fibrosis, a retrospective analysis of 22 biobanked samples from the Starzl Transplantation Institute (12 with post-LT NASH after 5 years and 10 without) was performed. Total plasma peptides were isolated and analyzed by 1D-LC-MS/MS analysis using a Proxeon EASY-nLC 1000 UHPLC and nanoelectrospray ionization into an Orbitrap Elite mass spectrometer. Qualitative and quantitative peptide features data were developed from MSn datasets using PEAKS Studio X (v10). LC-MS/MS yielded ~ 2700 identifiable peptide features based on the results from Peaks Studio analysis. Several peptides were significantly altered in patients that later developed fibrosis and heatmap analysis of the top 25 most significantly changed peptides, most of which were ECM-derived, clustered the 2 patient groups well. Supervised modeling of the dataset indicated that a fraction of the total peptide signal (~ 15%) could explain the differences between the groups, indicating a strong potential for representative biomarker selection. A similar degradome profile was observed when the plasma degradome patterns were compared being obesity sensitive (C57Bl6/J) and insensitive (AJ) mouse strains. The plasma degradome profile of post-LT patients yielded stark difference based on later development of post-LT NASH fibrosis. This approach could yield new "fingerprints" that can serve as minimally-invasive biomarkers of negative outcomes post-LT.


Assuntos
Transplante de Fígado , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Transplante de Fígado/métodos , Hepatopatia Gordurosa não Alcoólica/complicações , Estudos Retrospectivos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cirrose Hepática/complicações
2.
Toxicol Appl Pharmacol ; 468: 116514, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061008

RESUMO

BACKGROUND & AIMS: Vinyl chloride (VC) monomer is a volatile organic compound commonly used in industry. At high exposure levels, VC causes liver cancer and toxicant-associated steatohepatitis. However, lower exposure levels (i.e., sub-regulatory exposure limits) that do not directly damage the liver, enhance injury caused by Western diet (WD). It is still unknown if the long-term impact of transient low-concentration VC enhances the risk of liver cancer development. This is especially a concern given that fatty liver disease is in and of itself a risk factor for the development of liver cancer. METHODS: C57Bl/6 J mice were fed WD or control diet (CD) for 1 year. During the first 12 weeks of feeding only, mice were also exposed to VC via inhalation at sub-regulatory limit concentrations (<1 ppm) or air for 6 h/day, 5 days/week. RESULTS: Feeding WD for 1 year caused significant hepatic injury, which was exacerbated by VC. Additionally, VC increased the number of tumors which ranged from moderately to poorly differentiated hepatocellular carcinoma (HCC). Transcriptomic analysis demonstrated VC-induced changes in metabolic but also ribosomal processes. Epitranscriptomic analysis showed a VC-induced shift of the modification pattern that has been associated with metabolic disease, mitochondrial dysfunction, and cancer. CONCLUSIONS: These data indicate that VC sensitizes the liver to other stressors (e.g., WD), resulting in enhanced tumorigenesis. These data raise concerns about potential interactions between VC exposure and WD. It also emphasizes that current safety restrictions may be insufficient to account for other factors that can influence hepatotoxicity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Cloreto de Vinil , Camundongos , Animais , Cloreto de Vinil/toxicidade , Cloreto de Vinil/metabolismo , Transcriptoma , Carcinoma Hepatocelular/patologia , Dieta Ocidental , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo
3.
Toxicol Sci ; 193(1): 103-114, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36892438

RESUMO

Alterations in physiological processes in pancreas have been associated with various metabolic dysfunctions and can result from environmental exposures, such as chemicals and diet. It was reported that environmental vinyl chloride (VC) exposure, a common industrial organochlorine and environmental pollutant, significantly exacerbated metabolic-related phenotypes in mice fed concurrently with high-fat diet (HFD) but not low-fat diet (LFD). However, little is known about the role of the pancreas in this interplay, especially at a proteomic level. The present study was undertaken to examine the protein responses to VC exposure in pancreas tissues of C57BL/6J mice fed LFD or HFD, with focus on the investigation of protein expression and/or phosphorylation levels of key protein biomarkers of carbohydrate, lipid, and energy metabolism, oxidative stress and detoxification, insulin secretion and regulation, cell growth, development, and communication, immunological responses and inflammation, and biomarkers of pancreatic diseases and cancers. We found that the protein alterations may indicate diet-mediated susceptibility in mouse pancreas induced by HFD to concurrent exposure of low levels of inhaled VC. These proteome biomarkers may lead to a better understanding of pancreas-mediated adaptive or adverse response and susceptibility to metabolic disease.


Assuntos
Proteoma , Cloreto de Vinil , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Proteômica , Camundongos Endogâmicos C57BL , Pâncreas , Biomarcadores
4.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778394

RESUMO

Although liver transplantation (LT) is an effective therapy for cirrhosis, the risk of post-LT NASH is alarmingly high and is associated with accelerated progression to fibrosis/cirrhosis, cardiovascular disease, and decreased survival. Lack of risk stratification strategies hamper liver undergoes significant remodeling during inflammatory injury. During such remodeling, degraded peptide fragments (i.e., 'degradome') of the ECM and other proteins increase in plasma, making it a useful diagnostic/prognostic tool in chronic liver disease. To investigate whether inflammatory liver injury caused by post-LT NASH would yield a unique degradome profile, predictive of severe post-LT NASH fibrosis, we performed a retrospective analysis of 22 biobanked samples from the Starzl Transplantation Institute (12 with post-LT NASH after 5 years and 10 without). Total plasma peptides were isolated and analyzed by 1D-LC-MS/MS analysis using a Proxeon EASY-nLC 1000 UHPLC and nanoelectrospray ionization into an Orbitrap Elite mass spectrometer. Qualitative and quantitative peptide features data were developed from MSn datasets using PEAKS Studio X (v10). LC-MS/MS yielded ∼2700 identifiable peptide features based on the results from Peaks Studio analysis. Several peptides were significantly altered in patients that later developed fibrosis and heatmap analysis of the top 25 most significantly-changed peptides, most of which were ECM-derived, clustered the 2 patient groups well. Supervised modeling of the dataset indicated that a fraction of the total peptide signal (∼15%) could explain the differences between the groups, indicating a strong potential for representative biomarker selection. A similar degradome profile was observed when the plasma degradome patterns were compared being obesity sensitive (C57Bl6/J) and insensitive (AJ) mouse strains. Both The plasma degradome profile of post-LT patients yields stark difference based on later development of post-LT NASH fibrosis. This approach could yield new "fingerprints" that can serve as minimally-invasive biomarkers of negative outcomes post-LT.

5.
Matrix Biol Plus ; 17: 100127, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36632559

RESUMO

Although most work has focused on resolution of collagen ECM, fibrosis resolution involves changes to several ECM proteins. The purpose of the current study was twofold: 1) to examine the role of MMP12 and elastin; and 2) to investigate the changes in degraded proteins in plasma (i.e., the "degradome") in a preclinical model of fibrosis resolution. Fibrosis was induced by 4 weeks carbon tetrachloride (CCl4) exposure, and recovery was monitored for an additional 4 weeks. Some mice were treated with daily MMP12 inhibitor (MMP408) during the resolution phase. Liver injury and fibrosis was monitored by clinical chemistry, histology and gene expression. The release of degraded ECM peptides in the plasma was analyzed using by 1D-LC-MS/MS, coupled with PEAKS Studio (v10) peptide identification. Hepatic fibrosis and liver injury rapidly resolved in this mouse model. However, some collagen fibrils were still present 28d after cessation of CCl4. Despite this persistent collagen presence, expression of canonical markers of fibrosis were also normalized. The inhibition of MMP12 dramatically delayed fibrosis resolution under these conditions. LC-MS/MS analysis identified that several proteins were being degraded even at late stages of fibrosis resolution. Calpains 1/2 were identified as potential new proteases involved in fibrosis resolution. CONCLUSION. The results of this study indicate that remodeling of the liver during recovery from fibrosis is a complex and highly coordinated process that extends well beyond the degradation of the collagenous scar. These results also indicate that analysis of the plasma degradome may yield new insight into the mechanisms of fibrosis recovery, and by extension, new "theragnostic" targets. Lastly, a novel potential role for calpain activation in the degradation and turnover of proteins was identified.

6.
medRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168372

RESUMO

Alcohol-related hepatitis (AH) is plagued with high mortality and difficulty in identifying at-risk patients. The extracellular matrix undergoes significant remodeling during inflammatory liver injury that can be detected in biological fluids and potentially used for mortality prediction. EDTA plasma samples were collected from AH patients (n= 62); Model for End-Stage Liver Disease (MELD) score defined AH severity as moderate (12-20; n=28) and severe (>20; n=34). The peptidome data was collected by high resolution, high mass accuracy UPLC-MS. Univariate and multivariate analyses identified differentially abundant peptides, which were used for Gene Ontology, parent protein matrisomal composition and protease involvement. Machine learning methods were used on patient-specific peptidome and clinical data to develop mortality predictors. Analysis of plasma peptides from AH patients and healthy controls identified over 1,600 significant peptide features corresponding to 130 proteins. These were enriched for ECM fragments in AH samples, likely related to turnover of hepatic-derived proteins. Analysis of moderate versus severe AH peptidomes showed a shift in abundance of peptides from collagen 1A1 and fibrinogen A proteins. The dominant proteases for the AH peptidome spectrum appear to be CAPN1 and MMP12. Increase in hepatic expression of these proteases was orthogonally-validated in RNA-seq data of livers from AH patients. Causal graphical modeling identified four peptides directly linked to 90-day mortality in >90% of the learned graphs. These peptides improved the accuracy of mortality prediction over MELD score and were used to create a clinically applicable mortality prediction assay. A signature based on plasma peptidome is a novel, non-invasive method for prognosis stratification in AH patients. Our results could also lead to new mechanistic and/or surrogate biomarkers to identify new AH mechanisms. Lay summary: We used degraded proteins found the blood of alcohol-related hepatitis patients to identify new potential mechanisms of injury and to predict 90 day mortality.

7.
Environ Epigenet ; 7(1): dvab008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34548932

RESUMO

Exposure to a single dose of polychlorinated biphenyls (PCBs) and a 12-week high-fat diet (HFD) results in nonalcoholic steatohepatitis (NASH) in mice by altering intracellular signaling and inhibiting epidermal growth factor receptor signaling. Post-transcriptional chemical modification (PTM) of RNA regulates biological processes, but the contribution of epitranscriptomics to PCB-induced steatosis remains unknown. This study tested the hypothesis that PCB and HFD exposure alters the global RNA epitranscriptome in male mouse liver. C57BL/6J male mice were fed a HFD for 12 weeks and exposed to a single dose of Aroclor 1260 (20 mg/kg), PCB 126 (20 µg/kg), both Aroclor 1260 and PCB 126 or vehicle control after 2 weeks on HFD. Chemical RNA modifications were identified at the nucleoside level by liquid chromatography-mass spectrometry. From 22 PTM global RNA modifications, we identified 10 significant changes in RNA modifications in liver with HFD and PCB 126 exposure. Only two modifications were significantly different from HFD control liver in all three PCB exposure groups: 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A). Exposure to HFD + PCB 126 + Aroclor 1260 increased the abundance of N(6), O(2)-dimethyladenosine (m6Am), which is associated with the largest number of transcript changes. Increased m6Am and pseudouridine were associated with increased protein expression of the writers of these modifications: Phosphorylated CTD Interacting Factor 1 (PCIF1) and Pseudouridine Synthase 10 (PUS10), respectively, in HFD + PCB 126- + Aroclor 1260-exposed mouse liver. Increased N1-methyladenosine (m1A) and m6A were associated with increased transcript levels of the readers of these modifications: YTH N6-Methyladenosine RNA Binding Protein 2 (YTHDF2), YTH Domain Containing 2 (YTHDC2), and reader FMRP Translational Regulator 1 (FMR1) transcript and protein abundance. The results demonstrate that PCB exposure alters the global epitranscriptome in a mouse model of NASH; however, the mechanism for these changes requires further investigation.

8.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34065028

RESUMO

BACKGROUND: High-level occupational vinyl chloride (VC) exposures have been associated with hepatic hemangiosarcoma, which typically develops following a long latency period. Although VC is genotoxic, a more comprehensive mode of action has not been determined and diagnostic biomarkers have not been established. The purpose of this study is to address these knowledge gaps through plasma metabolomics. METHODS: Plasma samples from polyvinyl chloride polymerization workers who developed hemangiosarcoma (cases, n = 15) and VC exposure-matched controls (n = 17) underwent metabolomic analysis. Random forest and bioinformatic analyses were performed. RESULTS: Cases and controls had similar demographics and routine liver biochemistries. Mass spectroscopy identified 606 known metabolites. Random forest analysis had an 82% predictive accuracy for group classification. 60 metabolites were significantly increased and 44 were decreased vs. controls. Taurocholate, bradykinin and fibrin degradation product 2 were up-regulated by greater than 80-fold. The naturally occurring anti-angiogenic phenol, 4-hydroxybenzyl alcohol, was down-regulated 5-fold. Top affected ontologies involved: (i) metabolism of bile acids, taurine, cholesterol, fatty acids and amino acids; (ii) inflammation and oxidative stress; and (iii) nicotinic cholinergic signaling. CONCLUSIONS: The plasma metabolome was differentially regulated in polyvinyl chloride workers who developed hepatic hemangiosarcoma. Ontologies potentially involved in hemangiosarcoma pathogenesis and candidate biomarkers were identified.


Assuntos
Biomarcadores/sangue , Hemangiossarcoma/diagnóstico , Neoplasias Hepáticas/diagnóstico , Metaboloma , Doenças Profissionais/diagnóstico , Exposição Ocupacional/efeitos adversos , Cloreto de Polivinila/efeitos adversos , Estudos de Casos e Controles , Hemangiossarcoma/sangue , Hemangiossarcoma/induzido quimicamente , Hemangiossarcoma/epidemiologia , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/epidemiologia , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/sangue , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/epidemiologia , Estados Unidos/epidemiologia
9.
Acta Pharm Sin B ; 11(12): 3756-3767, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024304

RESUMO

Occupational and environmental exposures to industrial chemicals are well known to cause hepatotoxicity and liver injury. However, despite extensive evidence showing that exposure can lead to disease, current research approaches and regulatory policies fail to address the possibility that subtle changes caused by low level exposure to chemicals may also enhance preexisting conditions. In recent years, the conceptual understanding of the contribution of environmental chemicals to liver disease has progressed significantly. Mitochondria are often target of toxicity of environmental toxicants resulting in multisystem disorders involving different cells, tissues, and organs. Here, we review persistent maladaptive changes to mitochondria in response to environmental toxicant exposure as a mechanism of hepatotoxicity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease.

10.
Acta Pharm Sin B ; 11(12): 3768-3778, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024305

RESUMO

Liver diseases are considered to predominantly possess an inherited or xenobiotic etiology. However, inheritance drives the ability to appropriately adapt to environmental stressors, and disease is the culmination of a maladaptive response. Thus "pure" genetic and "pure" xenobiotic liver diseases are modified by each other and other factors, identified or unknown. The purpose of this review is to highlight the knowledgebase of environmental exposure as a potential risk modifying agent for the development of liver disease by other causes. This exercise is not to argue that all liver diseases have an environmental component, but to challenge the assumption that the current state of our knowledge is sufficient in all cases to conclusively dismiss this as a possibility. This review also discusses key new tools and approaches that will likely be critical to address this question in the future. Taken together, identifying the key gaps in our understanding is critical for the field to move forward, or at the very least to "know what we don't know."

11.
J Nutr Biochem ; 81: 108399, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388251

RESUMO

Olanzapine is effective to treat for schizophrenia and other mood disorders, but limited by side effects such as weight gain, dyslipidemia, and liver injury. Obesity in the US is at epidemic levels, and is a significant risk factor for drug-induced liver injury. Obesity incidence in the psychiatric population is even higher than in the US population as a whole. The purpose of this study was to test the hypothesis that obesity worsens olanzapine-induced hepatic injury, and to investigate the potential protective effects of sulforaphane. 8-week old female C57BL/6 mice were fed either a high-fat or low-fat control diet (HFD and LFD). Mice also received either olanzapine (8 mg/kg/d) or vehicle by osmotic minipump for 4 weeks. A subset of mice in the HFD + olanzapine group was administered sulforaphane, a prototypical Nrf2 inducer (90 mg/kg/d). Olanzapine alone increased body weight, without a commensurate increase in food consumption. Olanzapine also caused hepatic steatosis and injury. Combining olanzapine and HFD caused further dysregulation of glucose and lipid metabolism. Liver damage from concurrent HFD and olanzapine was worse than liver damage from high-fat diet or olanzapine alone. Sulforaphane alleviated many metabolic side effects of olanzapine and HFD. Taken together, these data show that olanzapine dysregulates glucose and lipid metabolism and exacerbates hepatic changes caused by eating a HFD. Activation of the intrinsic antioxidant defense pathway with sulforaphane can partially prevent these effects of olanzapine and may represent a useful strategy to protect against liver injury.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Isotiocianatos/farmacologia , Obesidade/metabolismo , Olanzapina/efeitos adversos , Sulfóxidos/farmacologia , Animais , Antioxidantes/administração & dosagem , Antipsicóticos/efeitos adversos , Peso Corporal/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Dieta com Restrição de Gorduras , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Feminino , Humanos , Isotiocianatos/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/epidemiologia , Estresse Oxidativo/efeitos dos fármacos , Prevalência , Sulfóxidos/administração & dosagem
12.
Toxicol Appl Pharmacol ; 399: 115068, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32445754

RESUMO

Volatile organic compounds (VOCs), such as vinyl chloride (VC), can be directly toxic at high concentrations. However, we have shown that 'nontoxic' exposures to VC and its metabolite chloroethanol (CE) enhances experimental non-alcoholic fatty liver disease (NAFLD), suggesting an unpredicted interaction. Importantly, VOC exposure has been identified as a potential risk factor for the development of obesity and its sequelae in humans. As there is a known axis between adipose and hepatic tissue in NAFLD, the impact of CE on white adipose tissue (WAT) inflammation and lipolysis was investigated. Mice were administered CE (or vehicle) once, after 10 weeks of being fed high-fat or low-fat diet (LFD). CE significantly enhanced hepatic steatosis and inflammation caused by HFD. HFD significantly increased the size of epididymal fat pads, which was enhanced by CE. The relative size of adipocyte lipid droplets increased by HFD + CE, which was also correlated with increased expression of lipid-associated proteins (e.g., PLINs). CE also enhanced HFD-induced indices of WAT inflammation, and ER stress. Hepatic-derived circulating FGF21, a major modulator of WAT lipolysis, which is hypothesized to thereby regulate hepatic steatosis, was significantly increased by CE in animals fed HFD. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH, involving the liver-adipose axis in this process. Specifically, CE enhances local inflammation and alters lipid metabolism and WAT-mediated hepatic steatosis due to changes in WAT lipolysis.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cloreto de Vinil/toxicidade , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo
13.
Food Chem Toxicol ; 139: 111242, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32205228

RESUMO

INTRODUCTION: Exposures to volatile organic compounds and metals have previously been associated with liver diseases including steatohepatitis, although more data are needed. Benzene, toluene, ethylbenzene, xylenes, styrene (BTEXS) and metals were measured in blood samples collected between May 2012-July 2013 from volunteers participating in home visits for the Gulf Long-term Follow-up (GuLF) Study. This cross-sectional analysis evaluates associations of exposure biomarkers with serum liver injury and adipocytokine biomarkers in a sample of 214 men. METHODS: Adult nonsmoking men without a history of liver disease or heavy alcohol consumption were included. The serologic disease biomarkers evaluated were the hepatocellular injury biomarker, cytokeratin 18 [whole (CK18 M65) and caspase-cleaved fragment (CK18 M30)]; and adipocytokines. Confounder-adjusted beta coefficients were determined using linear regression models for the overall sample (primary endpoints) and for obesity-classified sub-groups (secondary endpoints). A product interaction term between the exposure of interest and a dichotomized indicator of obesity was included to determine the disease modifying effects of obesity on the biomarker associations. RESULTS: The study sample was 57% white and 51% obese. In the overall sample, lead was positively associated with CK18 M30 (ß = 21.7 ± 6.0 (SE), p = 0.0004); IL-1ß (ß = 32.8 ± 5.2, p < 0.0001); IL-6 (ß = 72.8 ± 18.3, p = 0.0001); and IL-8 (ß = 140.8 ± 42.2, p = 0.001). Cadmium exposures were associated with increased IL-1ß (ß = 77.8 ± 26.3, p = 0.003) and IL-8 (ß = 419.5 ± 201.2, p = 0.04). There were multiple significant interactions between obesity and exposure to lead, cadmium, benzene and toluene in relation to outcome biomarkers. Among obese participants (n = 108), benzene, lead, and cadmium were each positively associated with CK18 M30, IL-1ß, IL-6, and IL-8. In obese subjects, lead was also inversely associated with leptin, and toluene was positively associated with IL-1ß. CONCLUSION: For the overall sample, heavy metal exposures were associated with liver injury (lead only) and/or systemic inflammation (lead and cadmium). Obesity modified the associations between BTEXS and heavy metal exposures on several of the outcome variables. In the obesity subgroup, liver injury was positively associated with lead, cadmium and benzene exposures; systemic inflammation was increased with lead, cadmium, benzene, and toluene exposures; and leptin was inversely associated with lead exposures. The cross-sectional design of this study makes it difficult to determine causality, and all results should be interpreted cautiously. Nonetheless, the potential impact of exposures to lead, cadmium, benzene and toluene in steatohepatitis, an obesity-associated inflammatory liver disease, warrants further investigation.


Assuntos
Derivados de Benzeno/sangue , Benzeno/metabolismo , Hepatopatias/sangue , Fígado/diagnóstico por imagem , Metais Pesados/sangue , Estireno/sangue , Tolueno/sangue , Xilenos/sangue , Adipocinas/sangue , Adulto , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Aspartato Aminotransferases/sangue , Benzeno/toxicidade , Derivados de Benzeno/toxicidade , Bilirrubina/sangue , Biomarcadores/sangue , Cotinina/sangue , Cotinina/toxicidade , Estudos Transversais , Citocinas/sangue , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Humanos , Inflamação , Queratina-18/sangue , Fígado/metabolismo , Hepatopatias/etiologia , Masculino , Metais Pesados/toxicidade , Pessoa de Meia-Idade , Estireno/toxicidade , Tolueno/toxicidade , Compostos Orgânicos Voláteis/sangue , Xilenos/toxicidade
14.
J Vis Exp ; (155)2020 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-31984951

RESUMO

Vinyl chloride (VC), an abundant environmental contaminant, causes steatohepatitis at high levels, but is considered safe at lower levels. Although several studies have investigated the role of VC as a direct hepatotoxicant, the concept that VC modifies sensitivity of the liver to other factors, such as nonalcoholic fatty liver disease (NAFLD) caused by high-fat diet (HFD) is novel. This protocol describes an exposure paradigm to evaluate the effects of chronic, low-level exposure to VC. Mice are acclimated to low-fat or high-fat diet one week prior to the beginning of the inhalation exposure and remain on these diets throughout the experiment. Mice are exposed to VC (sub-OSHA level: <1 ppm) or room air in inhalation chambers for 6 hours/day, 5 days/week, for up to 12 weeks. Animals are monitored weekly for body weight gain and food consumption. This model of VC exposure causes no overt liver injury with VC inhalation alone. However, the combination of VC and HFD significantly enhances liver disease. A technical advantage of this co-exposure model is the whole-body exposure, without restraint. Moreover, the conditions more closely resemble a very common human situation of a combined exposure to VC with underlying nonalcoholic fatty liver disease and therefore support the novel hypothesis that VC is an environmental risk factor for the development of liver damage as a complication of obesity (i.e., NAFLD). This work challenges the paradigm that the current exposure limits of VC (occupational and environmental) are safe. The use of this model can shed new light and concern on the risks of VC exposure. This model of toxicant-induced liver injury can be used for other volatile organic compounds and to study other interactions that may impact the liver and other organ systems.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Exposição Ambiental , Modelos Biológicos , Obesidade/etiologia , Cloreto de Vinil/toxicidade , Administração por Inalação , Animais , Humanos , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/patologia , Hepatopatias/etiologia , Camundongos Endogâmicos C57BL
15.
Toxicol Sci ; 174(1): 79-91, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774537

RESUMO

Vinyl chloride (VC), a common industrial chemical, has been associated with hemangiosarcoma and toxicant-associated steatohepatitis (TASH) in men working at rubber-production plants. Our group previously demonstrated that chronic VC inhalation at environmentally relevant levels (< 1 ppm) in male mice exacerbated hepatic injury caused by high-fat diet (HFD) feeding. Because VC studies on TASH have only been performed in male models, the objective of this study is to examine VC inhalation in female mice in the context of TASH mechanisms. Male and female C57Bl/6 mice were fed either a low-fat diet or HFD and exposed to VC or room air using an inhalation chamber, for 12 weeks (6 h, 5 days/week); and plasma and liver samples were collected after euthanasia. Compared with males, females were less susceptible to HFD+VC-induced obesogenic effects demonstrated by lower body weight and fat composition. Histological analysis revealed that whereas VC exacerbated HFD-induced steatosis in males, this effect was absent in females. In addition, females were more resistant to VC-induced hepatic inflammation whereas males had increased liver weights and higher hepatic Tnfα mRNA levels. Systemic markers of hepatic injury, namely alanine aminotransaminase and thrombin/antithrombin levels were increased by HFD+VC co-exposures only in males. In addition, females did not show significant cell death as previously reported in males. Taken together, the results suggested that VC inhalation led to sex-dependent liver and metabolic toxicity. This study implicated the importance of assessing sex differences in environmental basic science and epidemiologic studies to better identify at-risk populations in both men and women.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Poluentes Ambientais/toxicidade , Fígado Gorduroso/induzido quimicamente , Fígado/efeitos dos fármacos , Cloreto de Vinil/toxicidade , Animais , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Medição de Risco , Fatores Sexuais
16.
Toxicol Appl Pharmacol ; 382: 114745, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31499194

RESUMO

Vinyl chloride (VC) is a prevalent environmental toxicant that is rapidly metabolized within the liver. Its metabolites have been shown to directly cause hepatic injury at high exposure levels. We have previously reported that VC metabolite, chloroethanol (CE), potentiates liver injury caused by lipopolysaccharide (LPS). Importantly, that study showed that CE alone, while not causing damage per se, was sufficient to alter hepatic metabolism and increase mTOR phosphorylation in mice, suggesting a possible role for the mTOR pathway. Here, we explored the effect of an mTOR inhibitor, rapamycin, in this model. C57BL/6 J mice were administered CE, followed by rapamycin 1 h and LPS 24 h later. As observed previously, the combination of CE and LPS significantly enhanced liver injury, inflammation, oxidative stress, and metabolic dysregulation. Rapamycin attenuated not only inflammation, but also restored the metabolic phenotype and protected against CE + LPS-induced oxidative stress. Importantly, rapamycin protected against mitochondrial damage and subsequent production of reactive oxygen species (ROS). The protective effect on mitochondrial function by rapamycin was mediated, by restoring the integrity of the electron transport chain at least in part, by blunting the deactivation of mitochondrial c-src, which is involved mitochondrial ROS production by electron transport chain leakage. Taken together, these results further demonstrate a significant role of mTOR-mediated pathways in VC-metabolite induced liver injury and provide further insight into VC-associated hepatic damage. As mTOR mediated pathways are very complex and rapamycin is a more global inhibitor, more specific mTOR (i.e. mTORC1) inhibitors should be considered in future studies.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cloretos/toxicidade , Etanol/toxicidade , Lipopolissacarídeos/toxicidade , Sirolimo/uso terapêutico , Cloreto de Vinil/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Sirolimo/farmacologia , Cloreto de Vinil/metabolismo
17.
Curr Environ Health Rep ; 6(3): 80-94, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31134516

RESUMO

PURPOSE: Fatty liver disease (FLD) affects over 25% of the global population and may lead to liver-related mortality due to cirrhosis and liver cancer. FLD caused by occupational and environmental chemical exposures is termed "toxicant-associated steatohepatitis" (TASH). The current review addresses the scientific progress made in the mechanistic understanding of TASH since its initial description in 2010. RECENT FINDINGS: Recently discovered modes of actions for volatile organic compounds and persistent organic pollutants include the following: (i) the endocrine-, metabolism-, and signaling-disrupting chemical hypotheses; (ii) chemical-nutrient interactions and the "two-hit" hypothesis. These key hypotheses were then reviewed in the context of the steatosis adverse outcome pathway (AOP) proposed by the US Environmental Protection Agency. The conceptual understanding of the contribution of environmental exposures to FLD has progressed significantly. However, because this is a new research area, more studies including mechanistic human data are required to address current knowledge gaps.


Assuntos
Carcinógenos/toxicidade , Disruptores Endócrinos/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Praguicidas/toxicidade , Fatores de Risco
18.
Redox Biol ; 24: 101205, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31026768

RESUMO

Vinyl chloride (VC), an abundant environmental contaminant causes steatohepatitis at high levels, but is considered safe at lower (i.e., sub-OSHA) levels. However, we have previously shown that even lower VC levels exacerbate experimental nonalcoholic fatty liver disease (NAFLD) caused by high-fat diet (HFD). Mitochondrial oxidative injury and subsequent metabolic dysfunction appeared to play key roles in mediating this interaction. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) serves as a key line of defense against endogenous and exogenous reactive aldehydes. The current study therefore tests the hypothesis that allosteric activation of ALDH2 with Alda-1 will protect against VC-enhanced NAFLD. Mice were exposed to low VC concentrations (<1 ppm), or room air for 6 h/day, 5 days/week for 12 weeks, while on HFD or low-fat control diet (LFD). Some mice received Alda-1 (20 mg/kg i.p., 3 × /week) for the last 3 weeks of diet/VC exposure. Indices of liver injury, oxidative stress, metabolic and mitochondrial (dys)function were measured. As observed previously, low-dose VC did not cause liver injury in control mice; while liver injury caused by HFD was enhanced by VC. VC decreased hepatic ALDH2 activity of mice fed HFD. Alda-1 attenuated oxidative stress, liver injury, and dysmetabolism in mice exposed to HFD+VC under these conditions. Importantly, alterations in mitochondrial function caused by VC and HFD were diminished by Alda-1. Previous studies have indicated that liver injury caused by HFD is mediated, at least in part, by enhanced mitochondrial autophagy (mitophagy). Here, Alda-1 suppressed PINK1/PARKIN-mediated mitophagy. Taken together, these results support the hypothesis that ALDH2 is a critical defense against mitochondrial injury caused by VC in experimental NAFLD. The ALDH2 activator Alda-1 conferred protection against liver damage under these conditions, most likely via increasing clearance of aldehydes and preserving mitochondrial respiratory function.


Assuntos
Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cloreto de Vinil/efeitos adversos , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Autofagia/efeitos dos fármacos , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Ativação Enzimática/efeitos dos fármacos , Fígado Gorduroso/patologia , Fígado Gorduroso/prevenção & controle , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Substâncias Protetoras/farmacologia
19.
Alcohol ; 80: 53-63, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30445135

RESUMO

INTRODUCTION: Alcohol use disorders are major risk factors for the development of and susceptibility to acute respiratory distress syndrome. Although these risks of alcohol consumption on the lung are well described, mechanisms by which alcohol abuse promotes acute lung injury are poorly understood. These gaps in our understanding are due, at least in part, to limitations of animal models to recapitulate human alcohol consumption. Recently, a new model of chronic plus binge alcohol exposure was developed that is hypothesized to better model drinking patterns of individuals with alcohol use disorders. Specifically, this paradigm models chronic consumption coupled with periodic bouts of heavy drinking. The impacts of this alcohol-exposure regimen on the lung are uncharacterized. Therefore, the goal of this study was to examine lung injury and inflammation in a well-characterized experimental model of chronic + binge alcohol exposure. METHODS: 10-week-old male C57Bl6/J mice were administered ethanol-containing (or isocaloric control) liquid diet for 10 days, followed by a single ethanol gavage (5 g/kg). Lung inflammation and pulmonary function were assessed. RESULTS: Ten days of ethanol-containing liquid diet alone (chronic) did not detectably affect any variables measured. However, ethanol diet plus gavage (chronic + binge) caused neutrophils to accumulate in the lung tissue and in the bronchoalveolar lavage fluid 24 h post-binge. This inflammatory cell recruitment was associated with airway hyper-responsiveness to inhaled methacholine, as indicated by elevated resistance, Newtonian resistance, and respiratory resistance. CONCLUSIONS: Taken together, the novel findings reveal that ethanol alone, absent of any secondary inflammatory insult, is sufficient to produce inflammation in the lung. Although these changes were relatively mild, they were associated with functional changes in the central airways. This animal model may be useful in the future for identifying mechanisms by which alcohol abuse sensitizes at-risk individuals to lung injury.


Assuntos
Alcoolismo/complicações , Consumo Excessivo de Bebidas Alcoólicas/complicações , Pulmão/efeitos dos fármacos , Pneumonia/induzido quimicamente , Alcoolismo/patologia , Alcoolismo/fisiopatologia , Animais , Consumo Excessivo de Bebidas Alcoólicas/patologia , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/patologia , Pneumonia/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Biol Chem ; 399(11): 1237-1248, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29924722

RESUMO

Occupational and environmental exposures to industrial chemicals are known to cause hepatotoxicity and liver injury, in humans and in animal models. Historically, research has focused on severe acute liver injury (e.g. fulminant liver failure) or endstage diseases (e.g. cirrhosis and HCC). However, it has become recently recognized that toxicants can cause more subtle changes to the liver. For example, toxicant-associated steatohepatitis, characterized by hepatic steatosis, and inflammation, was recently recognized in an occupational cohort exposed to vinyl chloride. At high occupational levels, toxicants are sufficient to cause liver damage and disease even in healthy subjects with no comorbidities for liver injury. However, it is still largely unknown how exposure to toxicants initiate and possibly more importantly exacerbate liver disease, when combined with other factors, such as underlying non-alcoholic fatty liver disease caused by poor diet and/or obesity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease. The purpose of this review is to summarize established and proposed mechanisms of volatile organic compound-induced liver injury and to highlight key signaling events known or hypothesized to mediate these effects.


Assuntos
Hepatopatias/patologia , Fígado/efeitos dos fármacos , Compostos Orgânicos Voláteis/efeitos adversos , Humanos , Fígado/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...